

CORRIDOR NAVIGATION OF A MOBILE ROBOT USING A CAMERA AND

SENSORS—MULTI-AGENT APPROACH

by

YUKI ONO

(Under the Direction of Walter D. Potter)

ABSTRACT

This thesis addresses two issues in robotic application: an issue concerned with

the verification of how well the existing heuristic methods compensate for uncertainty

caused by sensing the unstructured environment, and an issue focusing on the design and

implementation of a control system that is easily expandable and portable to another

robotic platform aiming to future research and application. Using a robot equipped with a

minimal set of sensors such as a camera and infrared sensors, our multi-agent based

control system is built to tackle various problems encountered during corridor navigation.

The control system consists of four agents: an agent responsible for handling sensors, an

agent which identifies a corridor using machine vision techniques, an agent which avoids

collisions applying fuzzy logic to proximity data, and an agent responsible for

locomotion. In the experiments, the robot’s performance demonstrates the feasibility of a

multi-agent approach.

INDEX WORDS: Multi-agent systems, Corridor navigation, Collision avoidance,

Fuzzy logic controller, Machine vision, Reusable software,
Commercial robots and applications, Blackboard architecture.

CORRIDOR NAVIGATION OF A MOBILE ROBOT USING A CAMERA AND

SENSORS—MULTI-AGENT APPROACH

by

YUKI ONO

B.A., University of California, Los Angeles, 2000

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2003

© 2003

Yuki Ono

All Rights Reserved

CORRIDOR NAVIGATION OF A MOBILE ROBOT USING A CAMERA AND
SENSORS—MULTI-AGENT APPROACH

by

YUKI ONO

Major Professor: Walter D. Potter

Committee: Suchendra Bhandarkar
 Beth Preston

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
December 2003

ACKNOWLEDGEMENTS

Academic work is not achieved by a mere individual; rather, it is the art of

collaboration. When I first entered the AI Center at the University of Georgia, I neither

imagined that I would actually write a thesis about robotics, nor even dreamt of taking a

robotics course. However, it all happened after subsequent years by meeting people and

working with people. Now I am so grateful for what I have done during my academic

years, and what I have done for my thesis work. Therefore, I would like to express my

gratitude to the following people for their support and assistance in pursuing my

academic career.

Firstly, I would like to thank Dr. Don Potter for giving me an opportunity to work

on the robotic project. He has provided me with everything that I need to complete my

thesis work and my academic career including the support for robot hardware and

invaluable academic advice. I also thank Dr. Beth Preston and Dr. Suchendra Bhandarkar

for being on my thesis committee and for spending their precious time on my thesis work.

Similarly, I cannot help thanking Dr. James Smith and Dr. William Graves in the

Animal and Dairy Science department for being kind enough to offer me an assistantship

opportunity to work in the field of artificial intelligence for years. I thank my friend and

fellow students, particularly, Hajime Uchiyama. Without his help and collaboration, my

academic pursuit would not have ended successfully. Lastly, I thank my wife Kaori. She

has always been the best support since we were good friends, and I will get round to

nesting a new home with her soon.

 iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER

1 INTRODUCTION ...1

BACKGROUND...1

PROBLEM STATEMENT ..4

2 HARDWARE DESIGN ...9

ROBOT KIT..9

SENSORS ...10

SURVEYS ...12

3 SYSTEM APPROACH..18

INCREMENTAL DESIGN ...18

SYSTEM ARCHITECTURE ..18

PLATFORM INDEPENDENCE...21

4 SOFTWARE DESIGN...24

ROBOT CONTROL ARCHITECTURE...24

AGENTS ...29

CORRIDOR RECOGNITION..32

 v

FUZZY-BASED COLLISION AVOIDANCE..38

5 EXPERIMENTS..43

EXPERIMENTAL SETUP..43

EXPERIMENTAL RESULTS...44

DISCUSSION ...48

REFERENCES ..50

APPENDICES

A Images Acquired by Corridor Recognizer ...57

B Control Program Interface ...59

C Documentation of Image Processing API ..60

 vi

LIST OF TABLES

Page

Table 1: Variety of Multi-agent Systems..26

Table 2: Example of Driver I/O ...30

Table 3: Rule Set for Fuzzy Logic Controller..42

 vii

LIST OF FIGURES

Page

Figure 1: Customized ER1 Robot ..9

Figure 2: Sensor Arrangement ...10

Figure 3: Captured Image ..10

Figure 4: Photos of Sensors ...11

Figure 5: Signal (digital) /Distance Mapping ..11

Figure 6: Layered System Architecture ...19

Figure 7: Multi-agent System with Blackboard...28

Figure 8: Sensor Handling Apparatus ..29

Figure 9: Data Flow between Blackboard and Agents...31

Figure 10: Flow of Low-level Image Processing...34

Figure 11: Extracted Corridor ..35

Figure 12: Hough Transform and Line Selection ..36

Figure 13: Intensity Histogram Samples..37

Figure 14: Example of Fuzzy Inference...39

Figure 15: Membership Functions of Fuzzy Sets ..40

Figure 16: Turn-angle Fuzzy Set..41

Figure 17: IR Sensor Arrangements...41

Figure 18: Partial Environment Setup..43

Figure 19: Emergent Behavior (Obstacle Avoidance) ...46

 viii

1. INTRODUCTION

1.1 BACKGROUND

Advances of recent technologies in robotics have already made enormous

contributions in many industrial areas. There are uncountable robotic applications found

in our society such as surveillance systems, quality control systems, AGVs (autonomous

guided vehicles), and cleaning machines (Trahanias et al. 1997; Wijesoma, Khaw and

Teoh 2001). These robots do not normally appear in our everyday life, but they play an

important role in industries. However, the trend in robotic application is now shifting

toward the life of individuals, and robots are now caught in sight more often than ever

performing various tasks in disguise. For example, a quadruped robot plays a pet

comforting the owner, and a humanoid entertains people demonstrating an ability to

mimic human motions (e.g. bipedal walking, juggling with arms). Aside from

entertainment, there is also a rapid growth of needs for an intelligent robot in the social

and medical fields. Robots are now expected to become the next generation of

rehabilitation assistants for elderly and disabled people, and one of the researched areas

in assistive technology is the development of intelligent wheelchairs. By integrating an

intelligent machine into a powered wheelchair, a robotic wheelchair has an ability to

safely transport the user to a destination. This thesis was originally inspired by the need

of robotic assistance, and it hopefully leads to future study to build an intelligent powered

wheelchair which ultimately assists navigation of disabled people.

Numerous research has been conducted in the field of assistive robotics, and most

 1

studies on intelligent wheelchairs concentrated with developing autonomous behaviors of

the mobility aid. Most behaviors exhibited in related literature are the ones concerned

with detecting and avoiding obstacles, mapping a surrounding environment, planning safe

routes, and navigating a doorway. A wheelchair with such intelligent behaviors often uses

sensors such as cameras, ultrasonic sensors, infrared sensors, and laser scanners to

interact with an environment, and sometimes builds an internal world model to solve

various navigational problems. These intelligent wheelchairs have been developed mostly

for adults with severe physical disabilities. Yet, only several have been actually tested and

evaluated by disabled people in a real setting. In fact, many research projects dominated

by only artificial intelligence and robotics experts have been reported as unreliable in

terms of safety due to insufficient experimental results (Nisbet 2002). Many research

projects have shown that developing an intelligent wheelchair takes months and even

years of effort. In addition, evaluation in real world settings requires another few years,

which may or may not result in the approval of the system that ensures the safety of

disabled people.

Many engineering maneuvers are developed to solve navigation problems of powered

wheelchairs. While the issues in assistive technology have been researched in great depth,

there are only a few intelligent wheelchairs commercially available for end users such as

Smart Wheelchair1 (designed only for children) which protects the user from collisions

and navigates him/her from room to room following the tracks made with reflective tape

on the floor, and SCAD from Chailey Heritage 2 (Nisbet 2002). Most intelligent

wheelchairs are, on the other hand, still under development or only sold to schools and

1 The CALL Centre (University of Edinburgh). More information available at:
http://callcentre.education.ed.ac.uk/

 2

institutes for research purposes. One of the early developments of an intelligent

wheelchair was built by Yanco (1995) who introduced Wheelesley, a robotic wheelchair

system. This semi-autonomous robot travels safely in an indoor environment using

various sensors. Also, with the graphical interface, users can easily navigate the

wheelchair by selecting a simple instruction which represents a course of several

navigational tasks. NavChair is one of the most successful intelligent wheelchairs. It was

developed at the University of Michigan (Levine et al. 1999). The tasks of this robotic

wheelchair consist of the following three modes: (1) obstacle avoidance, (2) door passage,

and (3) wall following. The control system automatically changes the mode according to

the environmental surroundings. The TAO series developed by Applied AI Systems Inc.

are famous intelligent wheelchairs for exploring in an indoor environment (Gomi and

Griffith 1998). In addition to the tasks performed by the NavChair, TAO-1 and TAO-2

also have two additional tasks: (1) escape from a crowded environment and (2) perform

landmark based navigation. Currently, TAO-73 is in use. At the KISS Institute for

Practical Robotics, TinMan II (Miller 1998) is in the early stages of assistive robotics

development. The TAO and TinMan series have been sold to other institutions such as the

MIT AI Lab (Wheelesley) and the University of Rochester (Yanco 1998) as prototypes for

intelligent wheelchair development. Rolland (the Bremen Autonomous Wheelchair)

assists the user in obstacle avoidance and door navigation (Lankenau, Röfer and

Krieg-Bruckner 2003). MAid (Mobility Aid for Elderly and Disabled People) was

experimented with crowded environments (e.g. a railway station) and successfully

navigated in heavy passenger traffic (Prassler et al. 2001).

2 The company’s website: http://www.southdowns.nhs.uk/directory/chailey/
3 Information is available at the website: http://www.aai.ca/

 3

http://www.aai.ca/

In the development of an intelligent wheelchair, we consider roughly two kinds of

tasks, safety-oriented tasks and navigation-oriented tasks. The safety-oriented tasks

include behaviors such as collision detection, obstacle avoidance, lane (or corridor)

detection, wall following, and door navigation, and all of them ensure collision-free

navigation for wheelchair users. This group of behaviors generally exhibits behaviors in a

reactive manner. The navigation-oriented tasks, on the other hand, involve relatively

heavy cognitive tasks compared to the safety-oriented tasks. The behaviors such as

environmental mapping and route planning are typical examples of the

navigation-oriented tasks. There is no choice over which group of tasks is more important

than the other. However, the degree of autonomousness of a wheelchair may affect the

prioritization of tasks. For example, developing a semi-autonomous wheelchair usually

leaves high-level decisions to the user and thus prioritizes the safety-oriented tasks. The

thesis is founded on an aspiration of building a semi-autonomous intelligent wheelchair.

Therefore, the safety-oriented tasks are considered as the first priority, particularly

collision avoidance and corridor recognition. A small mobile robot is used as a test bed in

the unstructured indoor environment for experimenting with the robot control program

designed possibly for an intelligent wheelchair.

1.2 PROBLEM STATEMENT

This thesis addresses two issues in robotics. Firstly, one issue is concerned with the

verification of how well existing heuristic methods can compensate for the uncertainty

caused by sensing the unstructured environment. A typical problem in dealing with

uncertainty is often found in mobile robot navigation. In this thesis, an autonomous

 4

mobile robot navigates itself in a hallway. The robot demonstrates solutions to typical

navigational problems, corridor (lane) detection and collision avoidance, in an indoor

(office-like) environment. The second issue involves the design schema of robot control

software. A proposed framework is to design and build a robot control program that is

independent of the system platforms and easy to expand for future study.

In order to achieve successful navigation in a narrow hallway, a robot must exhibit

fundamental abilities such as recognizing a corridor and detecting and avoiding collisions.

The autonomous robot equipped with agents performing such tasks requires information

about the environment where the robot is situated. The robot used in this thesis is realized

using a minimal set of sensors such as a camera and infrared sensors. The camera

captures the front view of the surrounding environment, and the infrared sensors detect

objects in the nearby vicinity. The employed agents are capable of handling uncertainty

by compensating for the inaccuracy of the sensor data using a-priori knowledge and

heuristic methods such as fuzzy logic. The corridor navigation agent, for example,

processes a captured image and identifies a corridor using machine vision techniques.

The common strategy is lane detection, which includes robot (or vehicle) localization as

well as path extraction. Extracting a path from the image using edge information, the

agent determines the relative position between a robot and the extracted path (Bertozzi,

Broggi and Fascioli 2000). The collision detection agent uses the numerical range data

acquired from proximity detectors or ranging sensors to provide information necessary

for the robot to avoid collisions. Employing fuzzy logic enables the collision-free

navigation task with a minimal hardware system. A mobile robot with these intelligent

agents exhibited successful collision-free navigational behaviors in our unstructured

 5

indoor environment.

Recent robotic technology has drastically evolved mostly due to the enormous

advancement of personal computers. About thirty years ago, the famous Moore’s Law4

predicted today’s revolutionary improvement of silicon chips. Similarly, computer

software has also become much more intelligent, and some have demonstrated

human-level expertise. This hard-soft synchronization seems to be the key for a rapid

growth in the robotic industry. Numerous robots are now available not only for the sake

of reducing human cognitive and physical tasks, but also amusing, helping and assisting

people. It is a big step in the relationship between humans and robots because we no

longer operate but “interact with” robots. We now feel that these robots are very close to

our everyday life.

Likewise, robotics in the research domain is also taking a big step between

researchers and robots. Robotics researchers used to be dominated by only robotics or

artificial intelligence experts who built and programmed a robot from scratch. However,

due to the recent developments within the robot industry, building a robot has become

much more effortless with the aid of commercially available robot kits. Today’s

introductory robotics course does not have to depend on the intricate knowledge of

technical details. This brief statement does not jump to the conclusion of neglecting these

essential skills and knowledge, but it only suggests that the commercial robot kits quickly

involve students in the real problems of robotics. This consequently enables learners to

focus on their ingenuity rather than being stuck on technical problems.

There are more reasons to make use of commercial robot kits. Using these kits allows

4 The observation made in 1965 by Gordon Moore, co-founder of Intel that data density doubles
approximately every 18 months for the foreseeable future.

 6

us to possibly reuse the robot and the robot control program. Building a robot usually

requires the following steps: purchasing or manufacturing individual parts, wiring the

electrical circuits and chassis, and assembling them all into one piece. Therefore, once we

have built a robot, it is obviously difficult to disassemble, reassemble and reuse it in

different robotic applications. Likewise, the control software specifically designed for a

particular robot is most likely incompatible with other robots. The use of a commercial

robot kit may simplify the design of control software since the kit is usually provided

with useful tools. It is also a good start for building a program capable of being reused for

other robotic applications.

Implanting a control system on a different robot, it is apparently legitimate to make a

statement that the reuse speeds up the entire process of robot production. Developing a

computer program is generally a time-consuming task, and developing a robot control

program to deal with a machine embedded in the physical world is even more challenging

than the common computer programs that only deal with abstract entities. To evaluate the

performance of the tasks specified in a program, no matter what the tasks are, the

software must be integrated into a robot and tested in the physical environment.

Therefore, the robot, the program, and perhaps the environment must be arranged for the

complete evaluation.

Reusing a program which has already been tested and proven to perform certain tasks

(at least in the specified condition) can save enormous time and cost in building and

testing a robot. In the field of robotics and artificial intelligence, there are numerous

papers presenting solutions to tackle hard problems, explaining their approach with

various methods and techniques. While most studies have demonstrated the feasibility of

 7

algorithms or behaviors, not many papers have extensively discussed the reusability or

expandability of control software independent of the system platform or the robotic

hardware. This thesis focuses on this issue by proposing a framework for building a

mobile robot that will standardize the system compatibility and expandability with its

incremental design, aiming to future research and applications.

 8

2. HARDWARE DESIGN

2.1 ROBOT KIT

Figure 1. Customized ER1 Robot

The hardware used in this experiment is a

commercial robot kit called the ER1

Personal Robot System, supplied by

evolution robotics™5. The robot kit includes

the control software, aluminum beams and

plastic connectors to build a chassis, two

assembled nonholonomic scooter wheels

powered by two stepper motors, one 360 degree rotating caster wheel, a power module, a

battery (12V 5.4A), and a web-camera. The experimental robot also carries additional

accessories, nine infrared sensors and extra beams and connectors for reinforcement. A

laptop computer, Dell™ Latitude C640 (Intel® Mobile Pentium® 4 processor 2.0GHz

with 512 MB RAM), is used as a controller device, and Windows XP Professional is

loaded as the operating system.

The bundled software that comes with the kit provides various tools for the users to

operate the robot with its simple interface such as computer vision, hearing, speech,

networking, remote control, email, and some autonomous behaviors. However, the

furnished high-level behaviors have no flexibility in customization at the algorithmic

level of behaviors which in many cases requires programming for modifications.

5 More information available at: http://www.evolution.com/

 9

http://www.evolution.com/

Therefore, the experiments have been conducted without using the bundled software.

Unlike the software, the hardware of the ER1 robot kit empowers users to customize the

robot for their objectives. The

reconfigurable chassis enables us to design

a purposive mobile robot, and the

extensions (extra cameras, sensors and

grippers) can be easily added to the system

if necessary. The purpose of this

experiment is to build a robot as a test-bed

for the future wheelchair project, so the

autonomous robot is modeled after the

typical powered wheelchair with two

independent wheels.

Infrared

Camera

One web-camera is mounted in front
of the vehicle, and nine infrared
sensors are installed circling 360
degrees around the vehicle.

Figure 2. Sensor Arrangement

2.2 SENSORS

In this experiment, nine infrared (IR) sensors and a

single web camera are used and gather information

about the environment. Figure 2 depicts the

arrangement of sensors installed on the robot. The

camera, Logitech® QuickCam® Pro 4000, (Figure 4

Left) is mounted in front of the vehicle capturing the front view as in Figure 3. The 160 x

120 32-bit RGB image is updated and saved in memory at the rate of 10 frames per

second. The camera is connected to the PC through a USB (Universal Serial Bus) port

Figure 3. Captured Image

 10

and used mainly for recognizing a

path in the hallway. The IR sensors

enclose the rectangular robot fairly

evenly for 360 degrees as in Figure 2.

Three sensors are bundled together as

one piece. The bundled pack

incorporates three modulated infrared sensors, and each and every sensor can be

individually manipulated by the PC via one USB port. The evolution robotics IR sensor

pack (Figure 4 Right) is manufactured and provided by evolution robotics, the vendor of

the ER1 robot kit. The IR sensors are sold separately as an extra peripheral. The typical

distance measurement of the IR sensor is shown in the graph (Figure 5). The sensor is

measured against a smooth white wall under fair lighting conditions assuming the

hypothetical corridor environment.

The possible sensor value ranges

between 0 and 255 although the

graph only presents the range

between 100 and 200. According to

the measurement, the distance

between 15 cm and 100 cm should

reliably be acquired in reasonable

ambient lighting conditions. Normally, the larger value the sensors read, the more closely

the robot finds the source object. However, the graph shows that within the range below

15 cm, the sensor value drops rapidly and starts to look like a longer-range reading. This

Logitech QuickCam Pro 400 (Left)
evolution robotics IR sensor pack (Right)

Figure 4. Photos of Sensors

100.00

150.00

200.00

0 20 40 60 80 100

Distance (cm)

S
ig

na
l S

tre
ng

th

Measured sensor signal (Y-axis) maps the
distance (X-axis) in cm.

Figure 5. Signal (digital) /Distance Mapping

 11

can be disastrous if a robot is slowing down as it approaches a solid object while the

sensor value is reaching below the minimum range, and then at the next moment, the

robot suddenly misinterprets the apparently long-range reading driving full-speed into the

object. The easiest solution is to crossfire the sensors so that each sensor covers the

other’s dead zone6. The situation can also be avoided by employing sensor fusion

(Wijesoma et al. 2001). Behaviors such as collision detection and obstacle avoidance are

designed to perform tasks based on the information given by these sensors. Behaviors are

extensively discussed in Chapter 4.

2.3 SURVEYS

There are many sensors considered to be useful in mobile robot navigation. For

example, one kind of sensor is used to physically interact with and make changes based

on the environment (e.g. touch, ultrasonic and infrared sensors), and another kind is used

to perceive the environment without interaction (e.g. vision, temperature and compass

sensors). There is also a kind of sensor that measures or approximates the internal state of

the robot in relation to the environment (e.g. shaft encoder and gyroscope). In this section,

we only focus on sensors used for the experiments or concerned with the future study of

building an intelligent wheelchair.

A vision system is considered as a passive sensor and has fundamental advantages

over the sensors that are considered as active sensors such as infrared, laser, and sonar

sensors (Bertozzi 2000). Passive sensors such as cameras do not alter the environment by

emitting lights or waves in acquiring data, and also the obtained image (data) contains

more information (i.e. substantial, spatial and temporal information) than active sensors.

6 Demystifying the Sharp IR Rangers: http://www.acroname.com/robotics/parts/R48-IR12.html

 12

However, visual information can be easily fooled by the weather or the environment (i.e.

night, back-light, foggy and rainy weather). On the other hand, active sensors are robust

in severe environmental conditions and any computation is relatively inexpensive.

Although cameras are widely used in various robot applications, using a single

camera is not a major solution, especially in mobile robot navigation. Stereo vision (or

stereoscopic vision) using two or more separate cameras (Mazo et al. 2002; Goldberg,

Maimone and Matthies 2002; Asensio, Martínez and Montano 1998) is the most widely

accepted solution in robot navigation. With stereo vision, we can see “where” objects are

in relation to our own bodies with much greater precision, especially when those objects

are moving toward or away from us in the depth dimension. Also, stereo vision can be

realized with little expense with no entangled installation, at the cost of doubling the

energy consumption and allowing comparably expensive computation. Besides the

resource problems, correspondence problems7 (matching points between two input

images) are the known impediment and virtually impossible to solve without errors

(Hirschmüller 2002).

Omni-directional (or panoramic) cameras are also a part of the mainstream in robotic

navigation. Technically, omni-directional vision can be achieved in various ways. For

example, there are cameras with extreme wide angle lenses (fish-eye), cameras with

hyperbolically curved mirrors mounted in front of a standard lens (catadioptric imaging),

sets of cameras mounted in a ring -like fashion, or an ordinary camera that rotates around

an axis and takes a sequence of images that cover a field of view of 360 degrees. With an

ability of capturing the wide range of the surrounding environment, the omni-directional

7 Vision algorithms typically deal with correspondence problems in processing multiple frames
over time. Stereo vision needs to solve additional correspondence problems at each frame.

 13

camera is acknowledged as one of the most powerful tools in locating nearby obstacles

and their relative positions (Hundelshausen, Behnke and Rojas 2002; Argyros et al. 2002;

Matsumoto et al. 1999), tracking moving objects (Stratmann 2002), and localizing a robot

in the environment (Paletta, Frintrop and Hertzberg 2001). Despite the comparable

advantages, the Omni-directional cameras have drawbacks of cost performance (either in

expense or labor) and complexity in developing software in which vision algorithms have

to account for the specific properties of the particular omni-directional imaging sensor

setup at hand.

While relying on a single camera is not as powerful as the former approaches in

functionality, there are a fair number of research projects done using only one camera

(mostly in combination with other types of sensors) because the advantages of

minimizing cost and having easy installation are attractive and worthwhile. The usage of

a camera is varied in projects; one used a camera for recognizing a path including

corridors and roads (Broggi and Bertè 1995; McDonald, Franz and Shorten 2001) and

detecting dynamic and static obstacles (Trahanias et al. 1997). The other extracted

features such as faces, signs, and landmarks using a camera (Röfer 1997; Mazo et al.

2002; Schilling et al. 1998). Most research projects use cameras to obtain auxiliary

evidence for high-level decision-making while the essential information regarding safety

is mostly dependent on active sensors.

Measuring distance of nearby objects and walls is the most necessary and important

task for autonomous mobile agents. Most previously conducted research has used at least

one type of active sensor (ultrasonic, infrared or laser) for ranging purposes. More than

ninety percent of the studies reviewed for this thesis use ultrasonic (sonar) sensors, which

 14

are thought of as the most widely accepted sensor in mobile robot navigation because of

its cost performance. Various transducers are commercially available at reasonable prices

(e.g. Polaroid series). In typical configurations, sonar sensors are mounted in a ring

around the vehicle (Katevas 1997; Lankenau 1998), or sometimes the array of sensors

only covers the front side of the vehicle (Simon 1999).

Making use of the virtue in ranging, ultrasonic sensors are often used for obstacle

avoidance where the robot needs to detect static objects possibly blocking the navigation

route. Sonar sensors measure distance against target objects in good approximation

(covering more than 3 meters), practically regardless of any materials, but also have

severe drawbacks inherent to the principle of ultrasonic sensors. Well-known sensor cross

talk is due to the wide-angle emission cone of sound waves, which causes directional

uncertainty. Also, the transducer sometimes does not receive reflected sound waves when

the angle of a tilted object surface is too large (Borenstein and Koren 1988). Some novel

research, on the other hand, has been conducted overcoming the shortcomings.

Borenstein (1991) invented the VFH (Vector Field Histogram) Obstacle Avoidance

System8 which is employed in the NavChair (Simon et al. 1999). Ushimi et al. (2002), for

example, simulate the sonar-based method to navigate an autonomous robot safely in a

dynamic environment avoiding coexisting multiple moving obstacles.

Sonar sensors so far appear to be the best solution in ranging because of the cost

performance; however, laser-based sensors in fact are superior in range approximation

and found in many practical areas. “Laser” stands for Light Amplification by Simulated

Emission of Radiation, and the laser scanner is basically measuring reflected light (or

8 Obstacle avoidance methods based on ultrasonic sensors, accomplishing with the histogram grid
world model that is updated by rapidly firing 24 sensors around the robot during motion.

 15

emitted photons) of a specific frequency in a straight beam originating from the scanner

itself. Laser products are commercially available (e.g. Acuity, SICK and SUNX) and they

are commonly used in robotics projects. There are some advantages and drawbacks to

using laser-based sensors. First of all, laser-based sensors can extract information more

than just distance. For instance, a laser scanner is often used to extract topological

information making the best use of its ability to identify the textures of an object’s

surface and its precise range approximation. Also, in ranging the laser range finder, for

example, has considerable advantages over ultrasonic sensors in many aspects such as

instantaneous measurement, superior range accuracy, and precise angular resolution. In

fact, Wijesoma et al. (2001) presented the advantage in the directionality problem using

narrow beam sensors over ultrasonic sensors that have wide emission angles. At the same

time, the laser range finder has a fatal disadvantage; the scanner misses transparent

objects such as glasses and windows (Jensfelt 2001). In addition, the fancy functionality

may not be worth spending in exchange for the overpriced equipment. Examples of using

laser-based sensors are found in many robotics papers including the field of assistive

technology (Prassler, Scholz and Fiorini 1999; Fod, Howard and Matari´c 2002; Arras,

Tomatis and Siegwart 2000).

With respect to cost performance, infrared (IR) sensors are another major solution in

mobile robotics. IR sensors have limited usage; they are normally used as proximity

detectors rather than range finders because of their limited (short) range and their

susceptibility to ambient light interference. IR sensors are also known for their non-linear

behavior (see Figure 5 in the previous section) and their reflectance dependency on the

surface of a target object (Benet et al. 2002). However, the shortcomings are not as

 16

serious as those of the other active sensors, and a number of research projects have shown

the significant improvements on sensor performance by compensating for the uncertainty

caused by the sensors.

IR proximity detectors work somewhat similarly to laser range finders. Infrared light

(possibly pulsed) is emitted and the detector measures the reflection of the back-scattered

light. Although Sharp IR detectors are currently the most inexpensive commercial

products winning a reputation, but they are still “dumb” sensors and need some

intelligent compensation. In mobile robot navigation, infrared sensors are mostly used in

the safety-oriented tasks such as collision detection and obstacle avoidance because of

faster response time and lower cost (Benet et al. 2002). Most studies mix infrared sensors

with other sensors in order to optimize the tasks (Martinez, Tunstel and Jamshidi 1994;

Röfer 1997; Prassler et al. 1999; Mazo et al. 2002) while some achieved one or more of

the tasks only using a set of IR sensors (Kube 1996; Maaref and Barret 2002).

 17

3. SYSTEM APPROACH

3.1 INCREMENTAL DESIGN

The ultimate goal of our robotic experiments is to build a controller which can be

used in the future study of a robotic wheelchair. In order to build such a robust and

compatible program, we must build up the program as a complete system with a set of

complete behaviors, which enables the robot to be tested in the real world environment.

Rodney A. Brooks at the MIT AI Laboratory suggested in his famous article that building

complex robots (he calls creatures) which coexist in the world with humans must be

incrementally built in the same manner as biological evolution (Brooks 1991). For

instance, a single-cell amoeba which wanders the world without any goal and a human

who exhibits intelligent behaviors are both complete biological systems although there is

a difference in the degree of intelligence. During the astronomical time span, biological

evolution on earth started from the lower intelligence of amebas and now has ended up

with the human level intelligence up to this point. Brooks’ idea of building a robot

mimics the process of evolution. The concept of this incremental design helps the entire

project of building an intelligent system to advance toward to the goal steadily one step at

a time.

3.2 SYSTEM ARCHITECTURE

The system architecture is an abstract design that organizes the system components.

In the recent robotic literature, most autonomous robots employ a layered architecture.

 18

There are roughly two types in decomposing the system into layers, functional-based

layers and behavior-based layers. Nowadays, the trend in layered architecture is Brooks’

subsumption architecture, in which the system is decomposed into task-oriented

behaviors (Brooks 1986). In the subsumption architecture, the independent behaviors

exercise their tasks (from sensing to acting) in parallel. Therefore, the failure of one

behavior does not interrupt the entire system execution. The independence of behaviors

also gives the capability of easily adding more behaviors to the system in an incremental

manner. Each behavior can either suppress or inhibit the input/output of other behaviors

to interact with the environment, which causes the emergence of a high-level intelligent

behavior without giving the robot specific instructions of what to do to achieve that

particular behavior. Also, the absence of a

central reasoning protocol, no symbolic

representation of the world model, and the

direct control of actuators by a behavior are

well-known distinctive characteristics of the

subsumption architecture (Brooks 1991).

Although each behavior is independent, the

ability of influencing another behavior

eventually makes the system very

complicated, and adding another behavior

may thus require enormous efforts. In

addition, because of the emergent

characteristic of behavior-based systems, the

COMPONENT
LAYER

HARDWARE
LAYER

INFERENCE ENGINE
FUZZY RULE SET
FUZZY MEMBERSHIP

FUZZY COLLISION DETECTOR

SMOOTHING FILTER
EDGE DETECTOR
PATH DETECTOR

CORRIDOR-PATH DETECTOR

CAPTURE IMAGE
READ IR-SENSORS

CAMERA DRIVER

INFRARED DRIVER

SENSOR HANDLER

DRIVE FORWARD
DRIVE BACKWARD
TURN ANGLE

MOTOR DRIVER

DRIVE CONTROLLER

Figure 6. Layered System Architecture

 19

complexity in analyzing the result of emergent behaviors may also cause a problem in

modifying and configuring the system. The classical hierarchical approach had been, on

the other hand, dominating the robotic trend for decades until the rise of the subsumption

architecture. Unlike the behavior-based decomposition of the subsumption architecture,

the traditional layered architecture decomposes the system into functional modules such

as sense, plan, and act. This type of architecture has the advantage of having easily

separable functional modules that are associated with an intuitive paradigm in designing

the hierarchical architecture. However, it is often noted that the system is hardly

modifiable once the hierarchy is defined since the functionality of modules is limited to

contribute to certain behaviors (Liscano et al. 1995).

The robotic system architecture used in this thesis (Figure 6) consists of two layers

taking the advantage of the former two types. Basically, the system has four task-oriented

agents in the behavior-based like structure. Each agent is composed of two functional

layers, Hardware Layer and Component Layer. The Hardware Layer is a collection of

modules communicating with the robot’s hardware devices such as a camera, infrared

sensors and motors. The Hardware Layer is implemented with Visual C++ .NET since the

ER1 kit is provided with the development environment that specifies the language. The

SDK (Software Development Kit) already contains libraries to help in accessing the

hardware components of the robot, which reduces the amount of redundant effort. This

layer functions as a bridge between the upper-level layer and the hardware. The

Component Layer contains the intermediate functional modules which constitute the

higher-level behaviors as agents. One module can be shared by two or more agents,

which reduce redundancy in coding. The Component Layer is implemented with Java™

 20

Technology (Sun Microsystems, Inc). Programming in Java has enormous advantages in

building a robot control application. The next section explains why.

3.3 PLATFORM INDEPENDENCE

Java is a fairly new programming language and has not been widely used in robotic

applications. This is mainly because Java has been incapable of coping with real-time

problem solving because of its slow execution. It is true that Java is relatively slower than

native languages such as C and C++, while a robot control program must be

“time-sensitive”. However, discounting the time issue, we find Java has significant

advantages over C/C++ in many areas.

• The program written in Java (including GUI) is known to run almost anywhere

regardless of operating system or hardware, and the development tools are also

available in most platforms. “Write once, run anywhere”

• Java has the ability to operate our own or third-party optimized C/C++ libraries

(dll in Windows, so in Linux, etc.) with minor adjustments or simple wrappers.

• Java supports multi-threading at the language level. Real-time applications often

require parallel processing on a single CPU.

• Built-in security for safe and reliable network communications via TCP/IP has

efficient and robust native support in Java. Compact bytecode enables

downloadable Java applications (applets).

• Java has automatic garbage collection for memory leaks and also has simple

native thread creation and automatic cleanup for keeping the program from code

leaks.

• Direct interfacing with USB devices (the javax.usb package) is available (coming

 21

soon for Windows). Java implementation of USB is under development with the

support of Fujitsu, IBM, and Sun Microsystems.

• Many APIs (Application Programming Interfaces) for Java are already available

for free.

The recent advancement of computer technology enables us to build a Java-based

control program which can solve problems in real-time. Although it is still slower than

native programs, it does not bother us if the program completes the job in reasonable time.

Java provides more distinctive strength in controlling a mobile robot system. Most robot

control programs in the robotics literature seemed mostly hardware specific. It is mainly

because the uniqueness of hardware and operating systems limits on the programming

language and the development environment specific to the platforms. Meanwhile,

platform independence, one of the most attractive features in Java, allows the control

program to operate similar robots on various computer platforms and operating systems

with minor modifications.

Having this feature in the robot control program, we can test the program on a smaller

scale prototype. Using a test-bed for a robot control program is especially needed if the

robot is a large intelligent system equipped with many features. Another advantage of

using Java in mobile robot control is the availability of APIs. Sun Microsystems already

provides a number of useful tools for free which are unavailable in C/C++. In the

meantime, many research institutions, companies, and even individuals distribute

miscellaneous APIs with or without charge. In this thesis, those useful APIs are used in

the control program. For example, the fuzzy collision detection agent uses the NRC

 22

FuzzyJ Toolkit freely distributed by the National Research Council of Canada9. This

fuzzy toolkit API provides the capability of handling fuzzy concepts and reasoning.

Using these APIs usually maintains system compatibility.

9 More information available at: http://www.nrc-cnrc.gc.ca/

 23

4. SOFTWARE DESIGN

4.1 ROBOT CONTROL ARCHITECTURE

In order to execute multiple tasks on a single processing unit, the robot control

architecture must be carefully designed in a way that the robot would choose the right

action among many candidates. In Chapter 3, we discussed the classical hierarchical

architecture and Brooks’ subsumption architecture with respect to the system

organization. In this section, we discuss issues within the robot control spectrum rather

than the system design. The control method theoretically lies between two extremes, the

planner-based centralized approach and the decentralized purely reactive approach

(Mataric´ 1992). The former is a control method which makes a global decision on the

robot’s action by building a complete internal model of the environment using a-priori

knowledge and perceived data. On the other hand, the reactive approach normally

maintains no internal model and locally decides the robot action based on the sensor

inputs using simple if-then rules. In the recent robotics literature, non-extreme control

models such as hybrid10 and behavior-based11 systems gained popularity because of their

moderation that is relatively applicable to the realistic situations which usually require

real-time sensitivity and planning capability.

Various methodologies (e.g. behavior-based, blackboard, and agent-based systems)

are found in many projects on mobile robot navigation. In terms of the control

10 The architecture employing a reactive system for low level control and a hierarchical system
for higher level decision making.
11 Sometimes referred to as subsumption systems. The subsumption architecture (Brooks 1986)

 24

mechanism, the subsumption architecture seems valid and attractive because of its

parallelism in a decentralized fashion and also because of its instantaneous

decision-making process. However, behavior-based autonomous robots are hardly seen

beyond research domains because of the structural complexity (designating the inhibition

and suppression among multiple behaviors could be a complex and messy job) and the

verification difficulty (due to the decentralized nature the robot may express highly

unexpected (emergent) behaviors which makes it difficult to analyze the robot’s behavior

patterns). Besides, since the truly distributed model requires multi-processing units, the

concept does not completely match the objective of using a commercial robot kit as the

robot’s framework. Therefore, the behavior-based system may not be the perfect model

for building the robot control program this time.

Meanwhile, the blackboard architecture (Corkill 1991) also provides some attractive

features for mobile robot navigation. The concept of a “blackboard” is a metaphor for

information sharing among multiple heterogeneous problem-solving agents. The

blackboard system reasons about the robot’s up-to-date situations posted on the

blackboard and selects appropriate actions by processing symbolic information using

production rules (Liscano et al. 1995). One reason for using the blackboard architecture

in robot navigation is its adaptability for the application needed to make dynamic control

decisions. The activation and execution of agents are dynamic, and thus there is no

formal algorithm for controlling the robot behaviors. The blackboard system enables the

real-time activation of the most appropriate behavior in response to sensory interpretation.

Another reason is that diverse and specialized knowledge representations are possible

within a common data structure. This flexible representation of blackboard information

addresses a specific architecture within the behavior-based framework.

 25

makes any type of problem-solving agent available to incrementally solve a complex

problem. This is, in turn, to state that an agent (or a module) can be an expert system, a

neural network, fuzzy logic controller, or a conventional algorithmic procedure. The

representation data types on the blackboard can also be of any form such as a vector, a

formula, a string and a complex object. In this experiment, this is important because each

robot behavior deals with different types of sensory inputs and solves various problems in

order to achieve the goal. However, because of the presence of a global database,

reactivity to the dynamic environment may not be instantaneous. Also, the existence of a

control module (sometimes called an inference engine) may imply that blackboard

systems are not as robust and reliable as behavior-based systems. Once the control

module stops functioning, the whole system collapses. On the other hand, having a

malfunctioned behavior (or agent), the subsumption system still operates unless all

behaviors stop functioning at the same time.

While the blackboard architecture has a number of attractive features, difficulties are

Table 1. Variety of Multi-agent Systems (Corkill 2003)

 Form Description

1 Directly Interacting Agents

Agents directly communicate with each other (or
broadcast to everyone) and need to decide which
information to share in the process of problem
solving.

2 Agents with Blackboard Agent
Agents can interact indirectly with each other via the
blackboard and need to make decisions locally on
what they should be doing.

3 Agents with Blackboard and
Control (Manager) Agent

A typical configuration of the blackboard architecture
in which the control agent tells the other agents what
to do next. This agent is simply an extension of
Form 2.

4 Full-Fledged Blackboard
Agents

Multiple blackboard systems are affiliated on one big
multi-agent system. This is equivalent to Form 1 in
which each agent gets replaced by the agent in
Form 3.

 26

still present and agent-based systems, especially multi-agent systems, are instead winning

a vote as a revolutionary method in controlling an autonomous robot. A number of

multi-agent control systems are found in the recent AI literature (Soler et al. 2000; Sierra,

L´opez de M`antaras, and Busquets 2001). These systems are basically an extended form

of the blackboard system because of the fact that multi-agent systems in a way share

some characteristics with blackboard systems. For example, a multi-agent system has a

collection of agents (also called knowledge sources (KSs) in a blackboard system) which

collaborates in problem solving forming the “cooperating expert”. In fact, Corkill (2003)

suggested a blackboard system could be seen as a variation of multi-agent systems (Table

1). However, in contrast to blackboard systems, multi-agent systems normally emphasize

the following attributes of a control strategy: distribution (no central data repository),

autonomy (local control), interaction (communication and representation), coordination

(achieving coherence in local control decisions), and organization (emergent

organizational behavior).

The goal of this thesis is to design and implement a naive but robust and easily

expandable robot control package that is portable to heterogeneous system and hardware

platforms, starting with the commercial robot kit as a test bed. Having said that, the

system takes advantages of a multi-agent blackboard and a little bit of behavior-based

approaches to construct the robot control system. Figure 7 depicts the simplified diagram

representing the multi-agent system using a blackboard. The system in fact takes the

second form of the above table (Agents with Blackboard Agent). The agents basically

interact with the other components of the system by manipulating information on the

blackboard. The blackboard mainly operates as a central repository for all shared

 27

 28

Sensor
Handler

Figure 7. Multi-agent System with Blackboard

B
la

ck
bo

ar
d

 En
vi

ro
nm

en
t

Collision
detector

Corridor
Recognizer

Drive
Controller

information and a

communication medium

for all agents. The

information on the

blackboard may

represent facts,

assumptions, and

deductions made by the

system during the course

of solving a problem. An agent is a partial problem solver which may employ a different

problem-solving strategy and try to contribute to the solution by viewing the information

on the blackboard. The system has four independent agents such as Fuzzy Collision

Detector, Corridor Recognizer, Sensor Handler, and Drive Controller. Note that the

arrows in Figure 7 (above) represent information flow. Figure 7 shows that all four agents

are allowed to read / write information on the blackboard. Each one of the four agents

basically executes their tasks independently using information on the blackboard and

posts any result back to the blackboard.

While employing a blackboard as the global database, the system differs from the

blackboard architecture by having no control component with an inference mechanism.

This loss actually benefits our system by allowing agents to make dynamic decisions

locally. Then, a question arises. Is the blackboard merely a medium to share information?

The blackboard surely functions as a communication board; so the answer is partially

“yes” but there is more to it. In fact, agents do not need to communicate with each other

for information due to the existence of the blackboard. The blackboard assures the

independence for each agent and maintains decentralization for the system, which

ultimately results in allowing the system to have parallel and distributed intelligence.

It is importantly noted that the robot control system was originally inspired by Brooks’

subsumption architecture (Brooks 1986), but the system still does not allow a purely

reactive behavior. That is, the incoming sensory information must always go through the

blackboard before causing any physical actions. This hybrid system, however, can

increase the performance of real-time sensitivity over that of the blackboard architecture

by localizing the decision-making process and maintaining decentralization. The

following sections extensively explain how each agent is implemented and incorporated

with the whole system.

Camera IRs

4.2 AGENTS

The four agents (Sensor Handler,

Collision Detector, Corridor Recognizer,

and Drive Controller) and the blackboard

make up the control system. The agents

are classified into two groups. The Sensor

Handler and the Drive Controller belong

to the first group that has access to and interacts with the environment (see Figure 7). The

other two, the Fuzzy Collision Detector and the Corridor Recognizer are strictly

prohibited from having direct access to the environment. As a result, they perform tasks

based on the information acquired from the blackboard. There is no global controller for

?

Driver Driver Driver

Sensor Handler

Sensor Handler is capable of integrating
multiple sensors via the drivers.

Figure 8. Sensor Handling Apparatus

 29

these agents, and each of them independently tries to make a contribution to the system

during a course of navigation.

The agents that directly interact with the environment are designed for the purpose of

incrementally adding more tools to the system. Particularly, the Sensor Handler is

responsible for all the sensors installed on the robot and should have such ability without

making extensive efforts on the system modification and configuration. As we discussed

in Chapter 2, the agents are composed of two layers, the Hardware Layer and the

Component Layer. The Sensor Handler specially benefits from this layered architecture

by having device drivers at the Hardware Layer (Figure 8). Layering the drivers between

the Component Layer and the physical sensor apparatus, the Sensor Handler can maintain

its adaptability by having task-oriented modules at the Component Layer which only deal

with the symbolic representation of sensor data (e.g. digitized frequencies or an array of

pixels). Each sensor requires a driver written in a native programming language such as C

or C++ which runs on the operating system (e.g.

*.exe for Windows). Although the drivers can be

freely designed and implemented, they are

required to receive input commands and return

output character strings by the Sensor Handler

(Table 2). This standardized I/O specification

facilitates the implementation process of the

agent.

Table 2. Example of Driver I/O

The reasons of having the sensor-handling

agent in the robot control system are the

Driver: Infrared.exe

Input Command
-1 Halt
0 Idle
1 Raw data
2 Distance

Output (Character string)

[data ID]
[sensor 1] [value]
[sensor 2] [value]
... [sensor n] [value]

*Bolded inputs and commands in the
input table are reserved by the Sensor
Handler.

 30

following: organization,

enhancement, and

perception. During

system initialization,

the Sensor Handler

looks for sensors and

determines what is

available and what is

not because the other

agents are heavily

dependent on the sensor readings, and thus knowing the availability in advance

minimizes errors by deactivating the agent with no sensor inputs. Although some sensors

are used specifically for a particular agent, this agent has no authority to fully manipulate

those sensors. The agent that communicates with the environment indirectly through the

blackboard needs no access to sensors to interact directly with the outside world. This

paradigm also simplifies the design phase of introducing a new agent to the system

because we only need to consider the agent’s behavior assuming the sensor data is

already posted on the blackboard. The layered architecture surely empowers the system

with respect to the sensor organization, modulation and enhancement.

Perception

Navigational
Information

Fuzzy Collision Detector

Drive Controller

Corridor Recognizer

Sensor Handler

Arrows representing the flow of sensor data
Arrows representing the flow of navigational data
Miscellaneous data flow

Figure 9. Data Flow between Blackboard and Agents

Another important mission of the Sensor Handler is to maintain the up-to-date

perception about the surrounding environment so as to have the latest information

available for the other agents. The current system handles the following sensors, a camera

and nine IR sensors. The camera updates the front view of the surrounding environment

 31

capturing approximately ten frames per second. The IR sensors measure surrounding

objects almost continuously. The camera and the IRs mostly operate independently in a

separate thread, but sometimes synchronized in order to properly update the blackboard.

Figure 9 shows how the agents interact with the blackboard and manipulate the

information. The agents in the dotted rectangle such as Fuzzy Collision Detector and

Corridor Recognizer are the ones that use fresh data (perception) acquired via the Sensor

Handler, and they in turn update the information about the navigation status on the

blackboard.

The Drive Controller is also the one that has access to the environment. The agent

primarily holds responsibility for the robot’s actuator via the device driver that controls

motors through the stepper control module. The Drive Controller monitors the blackboard

and uses the navigational information for locomotion. With the layered framework, the

Drive Controller has the same advantage as the Sensor Handler in its simple and

structured implementation. For example, the agent is made of modules responsible for the

motor initialization and termination, the communication between layers, and the

maneuvering of the robot. A decent number of motion parameters such as velocity,

acceleration, turn-angle, straight distance, and driving duration are arranged for achieving

flexible movements.

4.3 CORRIDOR RECOGNITION

During a course of actions taken by the robot, a smooth and successful navigation is

directly dependent on how well the robot recognizes lines representing a corridor.

Extracting a path (or a road) from an image is one of the popular problems in the field of

 32

machine vision. Although in the past researchers have applied various sensors to solve

this problem, vision has proven to be the most successful because of the high information

content and the sensor passiveness (McDonald et al. 2001). In order to steer a path

through the environment, the vehicle must secure the middle space in a hallway. Most

view-based approaches use optical flow to approximate the distance, angle, or whatever

information necessary to drive the robot in a corridor. Roughly, the typical steps used in

most techniques are the following.

1. Image segmentation (e.g. regions, edges, intensity characteristics)

2. Feature selection and extraction (e.g. line, corner, shape)

3. Pattern recognition (e.g. objects, lanes, hallways)

The first step normally involves low-level image processing techniques. Pixel-based

operations (e.g. threshold and histogram operators) morphological analysis (e.g. thinning

and skeletonization), and digital filters (e.g. noise reduction and other enhancement

filters) are often used in this step. After shaping or simplifying the image, we want to find

features in the image necessary to identify the topological information. Feature detectors

(e.g. edge detectors and other feature detectors) are most often utilized to extract the

interesting patterns in the image, and the features get sometimes transformed into another

plane (e.g. Fourier, Hough and other transforms) and exclusively selected. In order to

identify the meaningful entities in the input image, we sometimes need to provide

background knowledge about things we are interested in. The third step involves heuristic

techniques such as fuzzy logic to classify the road shapes (Shanahan et al. 1999), and

neural networks with machine learning capability (Jochem, Pomerleau and Thorpe 1995).

These systems are precise and adaptive to unseen environments, but require a fairly large

 33

amount of a-priori knowledge and fine tuned parameter settings.

In the system used for the experiment, the corridor recognition agent roughly consists

of two levels of image processing modules. The low-level image processing basically

involves tasks specified at step one, image segmentation. Figure 10 shows each step of

the segmentation process. The JPEG image is acquired from the camera at the resolution

of 160 x 120 pixels with a 32-bit (ARGB) color model. The image is then converted to

grayscale (8-bit) for ease of computation while the pixel intensity values are stored in an

integer array. Applying a Gaussian filter reduces noise in the image by blurring

neighboring pixels and helps the edge detector to select correct edges. A Sobel edge

detector is applied on the smoothed image. The grayscale colors in the image are reduced

to black and white using the adaptive thresholding operator so as to remove unwanted

details before applying a thinning operation. The threshold value is dynamically selected

by performing a statistical analysis on the sampled pixel intensity values. Because of the

Gaussian smoothing filter
with the δ value of 1.0

Input image: 160x120
pixels, RGB Color Model

Color model conversion
from RGB to Grayscale

Thinning operator Sobel edge detector Adaptive thresholding

Figure 10. Flow of Low-level Image Processing

 34

nature of the Sobel operator, the thinning operator must be applied to reduce the lines

with several pixels width to a single pixel width. In contrast to the lower-level image

processing, a variety of research has been conducted on the feature extraction steps. For

example, Broggi and Bertè (1995) identified the road comparing the pre-encoded

synthetic road models with the road scene acquired from a camera. McDonald et al.

(2001) used a Hough transform to detect roads during

motorway driving scenarios.

In this experiment, the Hough transform with

a-priori knowledge (constraints on the geometry

features of a corridor) is used for extracting the line

segments of a corridor path (Figure 11). The Hough

transform was invented in 1962 by P.V.C. Hough and has been a widely accepted

engineering technique in various applications. The Hough transform is simply a

parameter estimation that uses a voting mechanism. Each point on a line (or a curve)

votes for several combinations of line parameters (Jain, Kasturi and Schunck 1995). In

principle, a Hough transform can detect arbitrary shapes in images, given a parameterized

description of the shape in question. The implementation of the Hough transform for line

detection uses a 2-D array for accumulating the voted points that represent parameterized

space (Whelan and Molloy 2000). Figure 12a shows the points voted for by the Hough

transform in a parameterized plane in which the linear equation is inversed so that the

variables become constants and the constants are variables of interest. Figure 12b is the

result of inversing the parameterized plane into an image plane. The points transformed

back on to the image plane constitute straight lines. In fact, the Hough transform possibly

The final result of applying
the Hough transform after the
feature extraction process.

Figure 11. Extracted Corridor

 35

extracts all line segments in the

image. In order to select lines

which best represent the hallway,

we need to use knowledge about

corridors. The selection process

involves two steps, selection and

verification. In the selection

phase, the lines whose slope

does not fit the geometry

constraint are thrown out first.

Next, each line is compared with

the edge maps (the final image

in Figure 10). In this step, the

pixels of a line matching the corresponding edge points are counted, and only lines with

the matching pixels that go above a certain threshold are selected. At the verification step,

after selecting the corridor path, the corridor recognition agent double-checks the lines to

see if they really represent the hallway or not by performing a complete histogram

analysis. The typical patterns of the histograms of images representing the environment

(corridors, walls, and objects) are shown in Figure 13. Each histogram to some extent

exhibits significant characteristics of the image representing the target situation. The first

histogram (Figure 13a) is a typical intensity distribution for the image that faces straight

along a hallway (as in Figure 11). The pixels spread over all intensity levels fairly evenly,

and the moderate peaks represent the floor between the boundaries of a corridor. The next

a. An image of the
parameterized space
plotting the points voted
by Hough transform.

b. The inverse of the

parameterized space.
Straight lines are the
possible candidates for
the corridor path.

c. Two winners out of

hundreds of corridor
candidates. Constraints
on the hallway geometry
knocked off the incorrect
candidates.

Figure 12. Hough Transform and Line Selection

 36

graph (Figure 13b) demonstrates massive pixel clusters lying within the short range of

intensity levels, which suggests that the image contains a large and somewhat

homogeneously colored object. As a

matter of fact, the image actually

contains one big homogeneous object,

the white wall. The corridor detection

agent is most likely to reject the

image because of the extreme

intensity characteristics. The last

histogram (Figure 13c) shows again a

moderate intensity distribution, but

the pixels are apt to belong to the tips

of gray-levels. As a matter of fact,

this is an example of obstacles. In

this particular example, the camera is

facing closely a large and colored

object in the robot’s path. It is

difficult to make assumptions about

the intensity of obstacles since any

object can be a possible candidate for

being an obstacle no matter how big

it is, which color it is, or what shape

it has. However, the chances that

0

100

200

300

400

500

600

700

1 128 255

GRAY LEVEL

P
I
X
E
L

0

100

200

300

400

500

600

700

1 128 255

GRAY LEVEL

P
I
X
E
L

b. The robot is facing a wall

a. The robot (camera) is facing a narrow corridor

0

100

200

300

400

500

600

700

1 128 255

GRAY LEVEL

P
I
X
E
L

c. The robot is facing an object in the path
Figure 13. Intensity Histogram Samples

 37

the obstacle intensity pattern fits the corridor intensity pattern may not probably be so

frequent.

4.4 FUZZY-BASED COLLISION AVOIDANCE

Fuzzy logic has been widely accepted in mobile robot navigation because of a

number of advantages. First, fuzzy logic controllers can easily incorporate heuristic

knowledge in the form of if-then rules manipulating the symbolic representation of an

environment. Secondly, robot navigation in an unstructured or unseen environment

mostly requires a non-linear, dynamic and fast system to map sensor values to the robot

actions. Also, fuzzy logic controllers have shown a certain degree of robustness in terms

of a variability and uncertainty in the parameters (Saffiotti 1997).

While fuzzy logic has been applied to many aspects of robot navigation, collision

avoidance and obstacle avoidance are the most popular territories and one of the major

research areas in mobile robotics. The robot capable of navigating autonomously in an

unstructured environment must know the ways to keep it safe during the course of

navigation. Numerous research projects concerned with collision avoidance use a fuzzy

logic controller to approximate reasoning necessary for dealing with uncertainty in

combination with various sensors. For example, Martinez et al. (1994) applied a fuzzy

logic controller using sonar sensors as range finders and IR sensors as proximity

detectors in order to estimate proximity, distance to an object, speed, and direction.

Tunstel, E. and Jamshidi (1994) employed a fuzzy-based mechanism to realize

wall-following behavior using four optical range sensors. Wijesoma (2001) implemented

a fuzzy navigation system coupling IR proximity detectors and laser scanners. Cho and

 38

Nam (2000) made a fuzzy controller

to steer a robot using image inputs.

The agent called Fuzzy Collision

Detector is a fuzzy-based collision

avoidance controller responsible for

the safety of the robot used in this

experiment. There are roughly three

steps in applying a fuzzy logic

controller. The first step is the input

fuzzification in which the crisp input

values are fed into the antecedent

membership functions, which maps to

appropriate linguistic terms. The

second step is to draw inferences by matching rules. Note that the input (antecedent)

typically matches more than one rule, and all the conclusions of the matched rules are

averaged out with a Boolean operation such as union. Lastly, the output is defuzzified and

yields crisp numerical values which promise safety during navigation. Figure 14 depicts

an example of the complete flow of fuzzy inference mechanism (although the inference

processes may repeat).

Linguistic
Variable Inputs

Fuzzy Inference

Linguistic
Variable Outputs

DDDEEEFFFUUUZZZZZZIIIFFFIIICCCAAATTTIIIOOONNN

FFFUUUZZZZZZIIIFFFIIICCCAAATTTIIIOONNN O

Crisp Navigation
Parameter Outputs

Crisp Sensor Input Left sensor = 255

Left sensor input
is large

IF left sensor
input is large
THEN right-turn
angle is large.

Right-turn angle
is large.

Turn-angle = -30˚

Figure 14. Example of Fuzzy Inference

The fuzzy logic controller has one input fuzzy set for sensor value and three output

fuzzy sets such as linear-distance, velocity and turn-angle. Each set is defined by one or

more membership functions that map numeric values onto linguistic terms. The

membership functions of each fuzzy set except the turn-angle fuzzy set are shown in

 39

Figure 15. The fuzzy-based

agent is fed with sensor values

as an input, acquired from a

set of infrared proximity

detectors. The values are

fuzzified with designated

linguistic terms (near,

medium, and far). Among

three output fuzzy sets, the

turn-angle fuzzy set has been

uniquely defined. The angle

lies between -30˚ and 30˚ as a

default (adjustable via the

navigation software interface).

The total angle (60˚ in this

case) divided into six

amplitudes is represented by

six member functions, and

each of which is associated

with the following linguistic

terms.

0

0.25

0.5

0.75

1

-25 -15 -5 5 15 25

Distance

Me
m

be
rs

hi
p

De
gr

ee

FORWARD ZERO BACKWARD

0

0.25

0.5

0.75

1

0 10 20 30 40

Velocity

Me
m

be
rs

hi
p

De
gr

ee

FAST MEDIUM SLOW

0

0.25

0.5

0.75

1

155.00 165.00 175.00 185.00 195.00 205.00

Sensor Value

Me
m

be
rs

hi
p

De
gr

ee

NEAR MEDIUM FAR

Figure 15. Membership Functions of Fuzzy Sets

 positive-left (PL)

 negative-left (NL)

 positive-center (PC)

 negative-center (NC)

 positive-right (PR)

 negative-right (NR)

 40

Figure 16 projects the six

linguistic terms on the partitioned

turn-angle fuzzy set. This scheme has

already been established and proven to

be an effective method (Fayad and

Webb 1999). Once the input is

fuzzified and all the output fuzzy sets

are defined as appropriate linguistic

terms, the fuzzy inference engine looks for a match between the input and the outputs.

The agent has 17 fuzzy rules in total: seven rules for the front sensors, two for the rear

sensors, and four for each of the left and right sensors as shown in Table 3. Left columns

in the table correspond the antecedents of the fuzzy rules. The nine IR sensors are used as

inputs, three sensors in the front, two in the back, and two on each side. The sensor

arrangement is shown in Figure 17. Right columns in the table are the sets of conclusions.

Notice that the rules do not necessarily carry the same conclusions.

One may wonder if the rules sufficiently cover all possible collision circumstances

which may demand more than seventeen rules. As a matter of fact, the number of

inferences we can draw from these 17 rules is at most 192 combinations, and the

Min Max

NL

PC

PL NR

NC

Turn-angle ranges between maximum and
minimum angles (30˚ and -30˚ as default).

Figure 16. Turn-angle Fuzzy Set

PR

0

Front Rear Side (Left)

Figure 17. IR Sensor Arrangements

 41

linguistic output explosively multiplies on to numerical values in the defuzzification

process. Defuzzification is the last step of the fuzzy logic controller. The outputs from

each rule firing are combined using a fuzzy union operator, and the crisp output value is

defuzzified by computing a centroid of the area that is enclosed by the output member

functions.
Table 3. Rule Set for Fuzzy Logic Controller

 Antecedents (IF) Conclusions (THEN)

1 [Front Center] sensor is NEAR [Distance] is BACKWARD
[Velocity] is MEDIUM

2 [Front Center] sensor is MEDIUM [Distance] is ZERO
[Velocity] is SLOW

3 [Front Center] sensor is FAR [Distance] is FORWARD
[Velocity] is FAST

4 [Front Left] sensor is NEAR [Distance] is BACKWARD
[Velocity] is MEDIUM

5 [Front Left] sensor is MEDIUM [Turn Angle] is NL

6 [Front Right] sensor is NEAR [Distance] is BACKWARD
[Velocity] is MEDIUM

7 [Front Right] sensor is MEDIUM [Turn Angle] is PR

8 [Rear Left] sensor is NEAR [Distance] is ZERO
[Velocity] is SLOW

9 [Rear Right] sensor is NEAR [Distance] is ZERO
[Velocity] is SLOW

10 [Left Front] sensor is NEAR
[Left Rear] sensor is NEAR [Turn Angle] is NL

11 [Left Front] sensor is NEAR
[Left Rear] sensor is MEDIUM [Turn Angle] is NC

12 [Left Front] sensor is NEAR
[Left Rear] sensor is FAR [Turn Angle] is NR

13 [Left Front] sensor is MEDIUM
[Left Rear] sensor is FAR [Turn Angle] is NL

14 [Right Front] sensor is NEAR
[Right Rear] sensor is NEAR [Turn Angle] is PR

15 [Right Front] sensor is NEAR
[Right Rear] sensor is MEDIUM [Turn Angle] is PC

16 [Right Front] sensor is NEAR
[Right Rear] sensor is FAR [Turn Angle] is PL

17 [Right Front] sensor is MEDIUM
[Right Rear] sensor is FAR [Turn Angle] is PR

Variables are enclosed by [] and linguistic terms are capitalized. Rules are
constructed based on the membership functions given in Figure 15 except for
the turn-angle fuzzy set that is explained in Figure 16.

 42

5. EXPERIMENTS

5.1 EXPERIMENTAL SETUP

The experiments are conducted on a narrow straight

corridor in an office-like indoor environment with a relatively

dimmed lighting condition. The corridor extends about 100 feet

in length and 4 feet in width. In a narrow opening like a

corridor, the robot moves with a speed slower than an average

walking speed. The agents Drive Controller, Sensor Handler

and Blackboard are the essential components that must be

executed during navigation. The collision detection agent is

independently executable, but the corridor recognition only

makes high-level decisions and must corporate with the agent

that makes decisions about motor control parameters.

Figure 18. Partial
Environment Setup

The most important mission of the experiments is to analyze and verify the

performance of the agents and the control system as well as to accomplish a successful

navigation. Therefore, the robot is evaluated in each of the criteria listed as the following.

1. Agents (targets: Fuzzy Collision Detector and Corridor Recognizer)

a. Robot with collision detection

b. Full feature (collision detection and corridor recognition)

2. Robot control system

a. Modularity and usability

b. Safety (system safety and robustness)

 43

For the purpose of evaluating the agents’ performance with respect to safety, on each

experiment the robot runs in a corridor with obstacles as in Figure 18. Because of the

dead-end in the corridor, an extra control subroutine is added to the Drive Controller in

which the robot turns around if the corridor recognition agent recognizes that the robot is

facing a wall. There are some more interesting situations such as a doorway and a corner

that have been tested to see how the robot tackles to these problems.

5.2 EXPERIMENTAL RESULTS

As a result, the robot has shown both desired and problematic behaviors. In the matter

of collision detection, the robot is able to avoid collisions with obstacles and walls. The

fuzzy-based collision detection agent maneuvered the vehicle around and navigated it to

the end of the hallway without collisions. There were also some problems, however. First

of all, the agent was often distracted by ambient light, which caused the retardation in

navigating the robot. As a possible solution, applying additional filters (e.g. low-pass,

high-pass, or band-pass filter) to protect the sensor input (although most IR sensors are

already filtered) from stray light may improve sensor readings before applying collision

detection. However, oftentimes it will require a sensor calibration in each and every

unique environment.

The second problem is the advisability of fuzzy rules. Although the rules are, to some

extent, optimized as the result of repetition of trial and error, the agent is sometimes

making magnified conclusions about the turning angle in large amplitude, which results

in zigzag locomotion. Relying only on the collision detection agent that only employs

infrared sensors may not be able to fix the problem completely, but there is still plenty of

 44

room for improving the sensor arrangement and the corresponding fuzzy rules. In

addition, using more sensors to cover broader ranges is definitely a plus.

The corridor recognition agent analyzes the visual input and the contents of the front

view. As a result, most of the time, the agent has made correct decisions on recognizing a

corridor, but they are not perfect enough in terms of safety in navigation. Although an

improvement still needs to be made with respect to the accuracy in selecting a correct set

of lines which represent a corridor, the main problem is the way to handle the shared

knowledge on the blackboard. In principle, the robot control system has no central brain

in the system, and any information posted on the blackboard must be handled and

interpreted by each agent. In the current system, the Drive Controller is the only agent

dealing with the shared information that reflects on the robot’s actuators.

A subtle timing difference in the results of agents sometimes causes destructive

behaviors. As a matter of fact, the robot has often stopped and backed up mistakenly and

sometimes even hit the walls during the experiment when executing both the collision

detection and corridor recognition agents. There are two reasons for this malfunctioned

behavior. One reason is a failure in knowledge synchronization. Because of the agents

that are completely independent and perform tasks in parallel, one agent occasionally

delays in updating the blackboard. The delays are most likely instantaneous and

unnoticeable but sometimes come in between two states where the robot is making a

significant transition. For example, the robot was facing along the corridor and then

turned to the wall in the next ten milliseconds. At this moment, the blackboard could

contain contradictory facts about the environment such as “going straight with a moderate

speed” (the message from the collision detection agent) and “facing a wall” (the message

 45

from the corridor recognition agent). There are options in solving this problematic

situation. One option is that either the Drive Controller must optimally resolve this

inconsistency, or the blackboard must know how to synchronize the update timing. The

other option is to introduce a new agent that resolves the conflict and synchronizes the

blackboard information.

The other possible reason is how to handle false claims given by the agents,

particularly the corridor recognition agent. A sequence of images obtained during

operation of the corridor recognition agent is given in Appendix A. The agent classifies

three things, a corridor, walls, and obstacles. The images in the appendix show that the

agent identifies the corridor almost perfectly. However, the ratio of correctness drops in

identifying the walls and the obstacles. In fact, it is extremely difficult to always make

correct judgments in the dynamic scene without giving an appropriate amount of hints

(knowledge about a particular environment and obstacles which reside in the

environment) to the agent. It is the simplest solution with 2 obdawblac;w thatils, ddring

the daptabhenemsolutiomvaluatgts ifdorm knoear obstacl. (RighmFigure 19. E me rg e n t B e h a v i o r (O b s t a c l e Av o i d a n c e) T h e r e w e r e s o me i n n e r e s t i n g b e h a v i o r s e x h i b i t e d b y t h e r o b o t . T h e r o b o t w a s

originally designed to do only two things: avoid collisions and recognize a hallway.

However, the robot also demonstrated unexpected movements: obstacle avoidance and

doorway navigation. Obstacle avoidance has emerged due to the coupling of the agent’s

behavior and the environment (the corridor wall). Figure 19 illustrates the obstacle

avoidance behavior exhibited by the robot. The robot steered around the rectangular

obstacle during navigation because of the wall that kept the robot from going away. The

agent would behave differently if the agent were situated in the wide open space. The

same principle applied to doorway navigation. The doorway navigation basically does not

differ from collision detection based on the assumption that the door is open. However,

the robot has to deal with more variety than a common hallway situation in topological

features such as a doorframe. The robot in fact went through the doorway in an

office-like environment without collision although it did so moving zigzag as expected.

As mentioned in the previous chapters, the objective of this experiment was to design

and build a robot control program that is independent of the system platforms and easy to

expand (modify) for future study. To begin with, the control system succeeded in

facilitating modularity and usability. The complete modulation in the multi-agent

architecture brought forth an effortless implementation, and the intelligible user interface

has navigational parameters all adjustable and realizes the smooth experiment processes.

The GUI (Graphical User Interface) written in Java is shown in Appendix B.

As opposed to the modulation, the program also left some problems regarding the

system stability. During navigation, the control system often lost control because of a

system failure. This could be caused by many reasons; nonetheless, it is mainly caused by

memory consumption. Although the agents written in Java already have an ability of

 47

automatic garbage collection, the device drivers written in C++.NET are not capable of

doing it on their own and need to be provided with one. Meanwhile, in order to recycle

resources efficiently, those drivers must be designed with extra caution considering all

possible cases for memory usage.

5.3 DISCUSSION

The vision-based agent, the fuzzy-based agent, and the agents responsible for

hardware components all cooperate within the blackboard-based multi-agent system. The

robot and the control system were presented and analyzed in the experiments. As a result,

the robot did not exhibit the perfectly desired performance, but the multi-agent approach

in the design criteria has proved its feasibility in mobile robot navigation. The problems

faced during the experiments are more related to the calibration against an environment

and the parameter adjustment on the agents than the fundamental design criteria of the

control system. The proposed layered architecture enabled the control system to be easily

expandable, and the use of Java technology made the system independent of operating

systems and robot hardware.

A fuzzy logic controller is integrated into the collision detection agent. Solely with

this agent, the robot demonstrated safe navigation in a hallway using a set of IR

proximity sensors. The unreliable sensor input is compensated for by the fuzzy logic

controller, and the agent made moderate decisions in the experiments. The corridor

recognition agent processes an incoming image to determine lines representing a hallway.

The agent has not yet performed at the level of satisfying the safety criterion while

detecting corridors more than ninety percent of the time. Future improvement is

 48

necessary for optimizing the recognition tasks. However, when the above two agents

collaborate on navigation, the real problem emerged and more work is required to fix the

problem. Because of the absence of a control mechanism, the system suffers serious

problems regarding information sharing. As the current ongoing research, possible

solutions are being implemented to compensate for this problem. For example, the

module was added to the blackboard agent which synchronizes the results given by the

other agents. Also, the next step is to introduce a new agent that accommodates all the

information acquired from agents and schedules (or prioritizes) the robot actions by

evaluating information on the blackboard. Further study is sought to design an agent

which actually performs the landmark-based navigation extending machine vision

techniques, and also an agent with a neuro-fuzzy controller for learning an environment

so that no manual calibration is necessary.

 49

REFERENCES

Arras, K.O. and Tomatis, N. (1999) Improving robustness and precision in mobile robot

localization by using laser range finding and monocular vision. Proceedings of the Third

European Workshop on Advanced Mobile Robots, Eurobot’99, Zurich, Switzerland.

http://citeseer.nj.nec.com/arras01multisensor.html

Arras, K. O., Tomatis, N. and Siegwart, R. (2000) Multisensor on-the-fly localization

using laser and vision. Proceedings of the 2000 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Takamatsu, Japan, 793-8.

Argyros, A. and et al. (2002) Semi-autonomous navigation of a robotic wheelchair.

Journal of Intelligent and Robotic Systems 34: 315-29.

Asensio, J. R., Martínez, J. M. and Montano, L. (1998) Navigation among obstacles by

the cooperation of trinocular stereo vision system and laser rangefinder. 3rd. IFAC

Symposium on Intelligent Autonomous Vehicles, IAV’98, Madrid, Spain, 456-61.

Benet, G. and et al. (2002) Using infrared sensors for distance measurement in mobile

robots. Robotics and Autonomous Systems 40: 255-66.

Bertozzi, M., Broggi, A. and Fascioli, A. (2000) Vision-based intelligent vehicles: state of

the art and perspectives. Robotics and Autonomous Systems 32: 1-16.

Borenstein, J. and Koren, Y. (1988) Obstacle avoidance with ultrasonic sensors. IEEE

Journal of Robotics and Automation RA-4(2): 213-8.

Borenstein, J. and Koren, Y. (1991) The Vector Field Histogram -- Fast

obstacle-avoidance for mobile robots. IEEE Journal of Robotics and Automation 7(3):

 50

http://citeseer.nj.nec.com/arras01multisensor.html

278-88.

Broggi, A. and Bertè, S. (1995) Vision-based road detection in automotive systems: a

real-time expectation-driven approach. Journal of Artificial Intelligence Research 3:

325-48.

Brooks, R. A. (1986) A robust layered control system for a Mobile Robot. IEEE Journal

of Robotics and Automation, RA-2(1): 14-23.

Brooks, R. A. (1991) Intelligent without representation. Artificial Intelligence 47: 139-59.

Cho, J. T. and Nam, B. H. (2000) A study on the fuzzy control navigation and the obstacle

avoidance of mobile robot using camera. Proceedings of the 2000 IEEE International

Conference on System, Man and Cybernetics, Nashville, TN, 2993-7.

Corkill, D. D. (1991) Blackboard systems. AI Expert 6(9): 40-7.

Corkill, D. D. (2003) Collaborating software: blackboard and multi-agent systems & the

future. Proceedings of the International Lisp Conference 2003, New York, NY.

http://dancorkill.home.comcast.net/pubs/ilc03.pdf

Crisman, J. and Cleary, M. (1998) Progress on the deictically controlled wheelchair. In

Mittal et al. eds., Assistive technology and AI. LNAI-1458. Berlin: Springer-Verlag,

137-49.

Fayad, C. and Webb, P. (1999) Optimized Fuzzy Logic Based on Algorithm for a Mobile

Robot Collision Avoidance in an Unknown Environment. Proceedings of the 7th

European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany.

http://www.cs.nott.ac.uk/~cxf/Papers/Optimised_Fuzzy_Logic.pdf

Fod, A., Howard, A. and Mataric´, M. J. (2002) A Laser-based people tracker.

 51

http://dancorkill.home.comcast.net/pubs/ilc03.pdf
http://www.cs.nott.ac.uk/~cxf/Papers/Optimised_Fuzzy_Logic.pdf

Proceedings of the 2002 International Conference on Robotics and Automation,

Washington DC, 3024-9.

Goldberg, S.B., Maimone M. W. and Matthies L. (2002) Stereo vision and rover

navigation software for planetary exploration. Proceedings of the 2002 IEEE Aerospace

Conference, Big Sky, MT, 2025-36.

Gomi, T. and Griffith, A. (1998) Developing intelligent wheelchairs for the handicapped.

In Mittal et al. eds., Assistive technology and AI. LNAI-1458, Berlin: Springer-Verlag,

150-78.

Hirschmüller, H. (2002) Real-time correlation-based stereo vision with reduced border

errors. International Journal of Computer Vision, 47(1/2/3): 229-46.

Hundelshausen, F. v., Behnke, S., and Rojas. R. (2002) An omnidirectional vision system

that finds and tracks color edges and blobs. In Birk, A., Coradeschi, S., and Tadokoro, S.,

eds., RoboCup 2001: robot soccer world cup V ,LNAI-2377, 103-22. Berlin:

Springer-Verlag.

Jain R., Kasturi, R. and Schunck, B.G. (1995) Machine vision. New York: McGraw-Hill.

Jensfelt, P. (2001) Approaches to mobile robot localization in indoor environments. Ph.D.

dissertation, Department of Signals, Sensors and Systems, Royal Institute of Technology,

Stockholm, Sweden.

Jochem, T., Pomerleau, D. and Thorpe C. (1995) Vision guided lane transition.

Proceedings of the 1995 IEEE Symposium on Intelligent Vehicles, Detroit, MI, 30-5.

Katevas, N. I. and et al. (1997) The autonomous mobile robot SENARIO: a sensor-aided

intelligent navigation system for powered wheelchairs. IEEE Robotics and Automation

Magazine 4(4): 60-70.

 52

Kimiaghalam, B. and et al. (2001) A multi-layered fuzzy inference systems for

autonomous robot navigation and obstacle avoidance. Proceedings of the 10th IEEE

International Conference on Fuzzy Systems, Melbourne, Australia, 340-3.

Kube, C. R. (1996) A minimal infrared obstacle detection scheme. The Robotics

Practitioner: The Journal for Robot Builders 2(2): 15-20.

Lankenau, A. and et al. (1998) Safety in robotics: the Bremen autonomous wheelchair.

Proceedings of the 5th International Workshop on Advanced Motion Control, Portugal,

Coimbra, 524-9.

Lankenau, A., Röfer, T. and Krieg-Bruckner, B. (2003) Self-localization in large-scale

environments for the Bremen Autonomous Wheelchair. In Freksa and et al. eds., Spatial

Cognition III. LNAI-2685. Berlin: Springer-Verlag, 34-61.

Levine, S.P. and et al. (1999) The NavChair Assistive Wheelchair Navigation System.

IEEE Transactions on Rehabilitation Engineering 7(4): 443-51.

Liscano, R. and et al. (1995) Using a blackboard to integrate multiple activities and

achieve strategic reasoning for mobile-robot navigation. IEEE Expert 10(2): 24-36.

Maaref, H. and Barret, C. (2002) Sensor-based navigation of a mobile robot in an indoor

environment. Robotics and Autonomous Systems 38: 1-18.

Martinez, A., Tunstel, E. and Jamshidi M. (1994) Fuzzy logic based collision avoidance

for a mobile robot. Robotica (12): 521-7.

Mataric´, M. J. (1992) Behavior-based control: main properties and implications.

Proceedings of the IEEE International Conference on Robotics and Automation,

Workshop on Architectures for Intelligent Control Systems, Nice, France, 46-54.

 53

Matsumoto Y. and et al. (1999) Exploration and map acquisition for view-based

navigation in corridor environment. Proceedings of the International Conference on Field

and Service Robotics, Pittsburgh, PA, 341-6.

Mazo, M. and et al. (2002) Experiences in assisted mobility: the SIAMO project.

Proceedings of the 2002 IEEE International Conference on Control Applications,

Anchorage, Alaska, 766-71.

McDonald, J. B., Franz, J. and Shorten, R. (2001) Application of the Hough transform to

lane detection in motorway driving scenarios. Proceedings of the Irish Signals and

Systems Conference 2001, Maynooth, Ireland.

http://www.cs.may.ie/~johnmcd/publications/ISSC2001.ps.gz

Miller, D. (1998) Assistive robotics: an overview. In Mittal et al. eds., Assistive

technology and AI. LNAI-1458. Berlin: Springer-Verlag, 126-136.

Nisbet, P. D. (2002) Who’s intelligent? Wheelchair, driver or both? Proceedings of the

2002 IEEE International Conference on Control Applications, Anchorage, Alaska, 760-5.

Paletta, L., Frintrop, S. and Hertzberg, J. (2001) Robust localization using context in

omnidirectional imaging. Proceedings of the 2001 IEEE International Conference on

Robotics and Automation, Seoul, Korea, 2072-7.

Prassler, E., Scholz, J. and Fiorini, P. (1999) MAid: a robotic wheelchair roaming in a

railway station. Proceedings of the International Conference on Field and Service

Robotics, Pittsburgh, PA.

http://voronoi.sbp.ri.cmu.edu/~fsr/FINAL_PAPERS/27_Prassler.pdf

Prassler. E. and et al. (2001) A robotic wheelchair for crowded public environments.

IEEE Robotics & Automation Magazine 8(1): 38-45.

 54

http://www.cs.may.ie/~johnmcd/publications/ISSC2001.ps.gz
http://voronoi.sbp.ri.cmu.edu/~fsr/FINAL_PAPERS/27_Prassler.pdf

Röfer, T. (1997) Routemark-based navigation of a wheelchair. Proceedings of the Third

ECPD International Conference on Advanced Robotics, Intelligent Automation and

Active Systems, Bremen, Germany, 333-8.

Saffiotti, A. (1997) The uses of fuzzy logic in autonomous robot navigation. Soft

Computing 1(4): 180-97.

Schilling, K. and et al. (1998) Sensors to improve the safety for wheelchair users. In

Porrero, I. P. and Ballabio, E. eds., Improving the quality of life for the European citizen.

Technology for inclusive design and equality, Assistive Technology Research Series 4,

331-5. Amsterdam: IOS Press.

Shanahan, J. and et al. (1999) Road recognition using fuzzy classifiers. Proceedings of

the 10th British Machine Vision Conference, Nottingham, UK, 432-42.

Sierra, C., L´opez de M`antaras, R. and Busquets, D. (2001) Multiagent bidding

mechanisms for robot qualitative navigation. Proceedings of the Seventh International

Workshop on Agent Theories, Architectures, and Languages (ATAL-2000), Boston, MA,

198-212.

Simon, P. and et al. (1999) The NavChair assistive wheelchair navigation system. IEEE

Transactions on Rehabilitation Engineering 7(4): 443-51.

Soler, J. and et al. (2000) Applying the ARTIS agent architecture to mobile robot control.

In Monard, M. C. and Sichman, J. S., eds., Advances in Artificial Intelligence,

LNAI-1952, 359-68. Berlin: Springer-Verlag.

Stratmann, I. (2002) Omnidirectional imaging and optical flow. Proceedings of the IEEE

Workshop on Omnidirectional Vision, Copenhagen, Denmark, 104-14.

 55

Trahanias, P.E. and et al. (1997) Navigational support for robotic wheelchair platforms:

an approach that combines vision and range sensors. Proceedings of the 1997 IEEE

International Conference on Robotics and Automation, Albuquerque, NM, 1265-70.

Tunstel, E. and Jamshidi, M. (1994) Embedded fuzzy logic-based wall-following

behavior for mobile robot navigation. Proceedings of the First International Joint

Conference of the North American Fuzzy Information Processing Society Biannual

Conference, San Antonio, TX, 329-30.

Ushimi, N. and et al. (2002) Online navigation of mobile robot among moving obstacles

using ultrasonic sensors. In Birk, A., Coradeschi, S., and Tadokoro, S., eds., RoboCup

2001: robot soccer world cup V ,LNAI-2377, 477-83. Berlin: Springer-Verlag.

Whelan, P. and Molloy, D. (2000) Machine vision algorithms in Java: techniques and

implementation. London: Springer-Verlag.

Wijesoma, W. S., Khaw, P. P., and Teoh, E. K. (2001) Sensor modeling and fusion for

fuzzy navigation of an AGV. International Journal of Robotics and Automation 16(1):

14-25.

Yanco, H. A. and et al. (1995) Initial report on Wheelesley: a robotic wheelchair system.

Proceedings of the Workshop on Developing AI Applications for the Disabled, held at the

International Joint Conference on Artificial Intelligence, Montreal, Canada.

http://www.cs.uml.edu/~holly/papers/ijcai95.pdf

Yanco, H. A. (1998) Integrating robotic research: a survey of robotic wheelchair

development. AAAI Spring Symposium on Integrating Robotic Research, Stanford,

California.

http://www.cs.uml.edu/~holly/papers/sss98.pdf

 56

http://www.cs.uml.edu/~holly/papers/ijcai95.pdf
http://www.cs.uml.edu/~holly/papers/sss98.pdf

APPENDIX A. Images Acquired by Corridor Recognizer

The sequence of images goes from left to right, from top to bottom. The navigation status at
the bottom of each image is the decision that the corridor recognition agent made.

Corridor:Y Wall:N Object:N

Corridor:Y Wall:Y Object:N

Corridor:N Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:Y Object:Y

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

 57

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:N Wall:Y Object:N

Corridor:N Wall:Y Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:N Object:N

Corridor:Y Wall:Y Object:N

 58

APPENDIX B. Control Program Interface

The GUI written in Java enables real-time perception and lets us adjust parameters for
navigation. Various switches also enable agents and the features turned On/Off.

An example execution disabling Corridor Recognition Agent. Navigational information is
shown on the output widow (right).

 59

APPENDIX C. Documentation of Image Processing API

Class ImageProcessing contains various tools for low-level (data-driven) image processing.
It is one of the APIs (Package ugaai.wheelchair.java) developed for the control program
used in our project.

Package ugaai.wheelchair.java

Class Summary

ImageProcessing ImageProcessing Class provides tools for data-driven image
processing.

ugaai.wheelchair.java
Class ImageProcessing

java.lang.Object
 |
 +--ugaai.wheelchair.java.ImageProcessing

public class ImageProcessing
extends java.lang.Object

ImageProcessing Class provides tools for data-driven image processing. The methods
read images of any size and in any color model but only write a JPEG image in either
ARGB or grayscale color model.

Field Summary
protected double G_SIGMA

 Sigma value for Gaussian function 1.0 as default

static int GRAY_BLACK
 Integer representation of BLACK in grayscale

static int GRAY_WHITE
 Integer representation of WHITE in grayscale

 60

Constructor Summary
ImageProcessing()
 A contractor with the default input file "in.jpg"

ImageProcessing(java.lang.String filename)
 A contractor

Method Summary
 void array2image()

 Converts the image array to the image buffer in grayscale

 void array2image(int color)
 Converts the image array to the image buffer

 void doubleThreshold(int tmin, int tmax)
 Double thresholding for grayscale images

 void doubleThresholdRGB(int tmin, int tmax)
 Double thresholding for RGB images

 void edgeDetector(int type)
 Selects one of the four edge detectors and apply to images

 void gaussianFilter()
 Gaussian smoothing filter with the default sigma value 1.0

 void gaussianFilter(double s)
 Gaussian smoothing filter

 int getHeight()
 Returns the height of the input image

 java.awt.image.BufferedImage getImageBuffer()
 Returns an array of the image buffer of the input image

 int[][] getImagePixels()
 Returns an array of the image pixels of the input image

static int getLuminance(int rgb)
 Converts a pixel value from RGB to gray-level

 int getWidth()
 Returns the width of an input image

static int[] histogram(int[][] pixels, int sx, int sy, int ex, int ey)
 Returns an array which represents the intensity distribution histogram
of the input image

 void image2array(int color)
 Converts the image buffer to the 2-D array of image pixels

 boolean load(java.lang.String filename)
 Loads an image file

 void meanFilter()
 Mean smoothing filter with window size = 3

 61

 void meanFilter(int size)
 Mean smoothing filter

 void medianFilter()
 Median smoothing filter

 void rgb2gray()
 Converts the RGB image to the grayscale

 void save(java.lang.String filename)
 Saves the current image pixels as a JPEG file in grayscale

 void save(java.lang.String filename, int color)
 Saves the current image pixels as a JPEG image file

 void setGaussianSigma(int sigma)
 Assigns a value to Gaussian sigma

 void setImagePixels(int[][] new_pixels)
 Sets an array of the image pixels to the input image

 void smootingFilter(int type)
 Selects one of three smoothing filters and apply to the image pixel

 void thinOperator()
 Thinning operator (Non-maxima suppression)

 void threshold()
 Adaptive thresholding operator

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

G_SIGMA

protected double G_SIGMA

Sigma value for Gaussian function 1.0 as default.

GRAY_WHITE

public static final int GRAY_WHITE

Integer representation of WHITE in grayscale.

See Also:

 62

Constant Field Values

GRAY_BLACK

public static final int GRAY_BLACK

Integer representation of BLACK in grayscale.

See Also:
Constant Field Values

Constructor Detail

ImageProcessing

public ImageProcessing(java.lang.String filename)

A constructor loads an input file and initializes the image pixels in ARGB Color
Model.

Parameters:
filename - A string which contains the image input filename

Throws:
java.lang.Exception - if initialization failed

ImageProcessing

public ImageProcessing()

A contractor with the default input file "in.jpg".

Method Detail

getImageBuffer

public java.awt.image.BufferedImage getImageBuffer()

 63

Returns an array of the image buffer of the input image.

Returns:
A BufferedImage

getImagePixels

public int[][] getImagePixels()

Returns an array of the image pixels of the input image.

Returns:

The 2-D integer array of image pixels

setImagePixels

public void setImagePixels(int[][] new_pixels)

Sets an array of the image pixels to the input image.

Parameters:

new_pixels - The 2-D integer array of an image
Returns:

None

getWidth

public int getWidth()

Returns the width of an input image.

Returns:
The image width

getHeight

public int getHeight()

 64

Returns the height of the input image.

Returns:

The image height

setGaussianSigma

public void setGaussianSigma(int sigma)

Assigns a value to Gaussian sigma.

Parameters:
sigma - A parameter to adjust the strength of blurring

Returns:
None

See Also:
G_SIGMA - A parameter for the Gaussian smoothing filter

load

public boolean load(java.lang.String filename)

Loads an image file.

Parameters:

filename - A string which contains the image input filename
Returns:

True if the image is successfully loaded
Throws:

java.io.IOException - If the image cannot be loaded
See Also:

ImageIO.read(java.io.File)

array2image

public void array2image(int color)

Converts the image array to the image buffer.

Parameters:

 65

color - Color Model (1 = ARGB or grayscale otherwise)
Returns:

None

array2image

public void array2image()

Converts the image array to the image buffer in grayscale.

Returns:
None

image2array

public void image2array(int color)

Converts the image buffer to the 2-D array of image pixels.

Parameters:
color - Color Model (1 = ARGB or grayscale otherwise)

Returns:
None

rgb2gray

public void rgb2gray()

Converts the RGB image to the grayscale.
To see the result, save the image as a JPEG file after applying this operator.

Returns:
None

save

public void save(java.lang.String filename, int color)

Saves the current image pixels as a JPEG image file.

 66

Parameters:

filename - A string which contains the output file name
color - Color Model type (1 = ARGB or Grayscale otherwise)

Returns:
None

Throws:
java.io.IOException - If the image cannot be loaded

save

public void save(java.lang.String filename)

Saves the current image pixels as a JPEG file in grayscale.

Parameters:
filename - A string which contains the output file name

Returns:
None

histogram

public static int[] histogram(int[][] pixels ,int sx ,int sy ,int ex ,int ey)

Returns an array which represents the intensity distribution histogram of the input
image.

Parameters:
pixels - A 2-D image pixel array
sx - x-coordinate of the staring point, x1
sy - y-coordinate of the staring point, y1
ex - x-coordinate of the ending point, x2
ey - y-coordinate of the ending point, y2

The histogram is computed for any rectangle from a starting point (x1,y1) to an
ending point (x2,y2).

Returns:
The histogram of a 1-D integer array whose index represents each of the 256
gray-level

 67

getLuminance

public static int getLuminance(int rgb)

Converts a pixel value from RGB to gray-level.

Parameters:
rgb - The RGB intensity value of a pixel

Returns:
An integer which represents the gray-level intensity of a pixel

threshold

public void threshold()

Adaptive thresholding operator automatically finds a threshold by statistically
examining the intensity values of image pixels.
To see the result, save the image as a JPEG file after applying this operator.

Returns:
None

doubleThreshold

public void doubleThreshold(int tmin, int tmax)

Double thresholding for grayscale images.
To see the result, save the image as a JPEG file after applying this operator.

Parameters:

tmin - The threshold lower bound
tmax - The threshold upper bound

Returns:
None

doubleThresholdRGB

public void doubleThresholdRGB(int tmin, int tmax)

 68

Double thresholding for RGB images.
To see the result, save the image as a JPEG file after applying this operator.

Parameters:
tmin - The threshold lower bound
tmax - The threshold upper bound

Returns:
None

smootingFilter

public void smootingFilter(int type)

Selects one of three smoothing filters and apply to the image pixel.
To see the result, save the image file as a JPEG after applying this operator.

Parameters:
type - A choice of smoothing filters
1 = Mean filter
2 = Median filter
3 = Gaussian filter

-- The default window size for Mean filter is 3x3.
-- The default Gaussian sigma is 1.0.

Returns:
None

meanFilter

public void meanFilter(int size)

Mean smoothing filter computes the local mean (averaged) value in the given
window.
To see the result, save the image as a JPEG file after applying this operator.

Parameters:
size - The size of a window

Returns:
None

 69

meanFilter

public void meanFilter()

Mean smoothing filter with window size = 3
To see the result, save the image file as a JPEG file after applying this operator.

Returns:
None

medianFilter

public void medianFilter()

Median smoothing filter.
To see the result, save the image as a JPEG file after applying this operator.

Returns:
None

gaussianFilter

public void gaussianFilter(double s)

Gaussian smoothing filter.
To see the result, save the image as a JPEG file after applying this operator.

Parameters:
s - The value for Gaussian sigma

Returns:
None

See Also:
G_SIGMA

gaussianFilter

public void gaussianFilter()

Gaussian smoothing filter with the default sigma value 1.0

 70

To see the result, save the image as a JPEG file after applying this operator.

Returns:
None

edgeDetector

public void edgeDetector(int type)

Selects one of the four edge detectors and apply to images.
Modifying detector masks in the code may or may not enhance the result.
To see the result, save the image as a JPEG file after applying this operator.

Parameters:
type - A choice of edge detectors
1 = Sobel edge detector
2 = Roberts edge detector
3 = Prewitt edge detector
4 = Laplacian edge detector

Returns:
None

thinOperator

public void thinOperator()

Thinning operator (Non-maxima suppression) is applied after performing edge
detection.
To see the result, save the image as a JPEG file after applying this operator.

Returns:
None

 71

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	1. INTRODUCTION
	1.1 BACKGROUND
	1.2 PROBLEM STATEMENT

	2. HARDWARE DESIGN
	2.1 ROBOT KIT
	2.2 SENSORS
	2.3 SURVEYS

	3. SYSTEM APPROACH
	3.1 INCREMENTAL DESIGN
	3.2 SYSTEM ARCHITECTURE
	3.3 PLATFORM INDEPENDENCE

	4. SOFTWARE DESIGN
	4.1 ROBOT CONTROL ARCHITECTURE
	4.2 AGENTS
	4.3 CORRIDOR RECOGNITION
	4.4 FUZZY-BASED COLLISION AVOIDANCE

	5. EXPERIMENTS
	5.1 EXPERIMENTAL SETUP
	5.2 EXPERIMENTAL RESULTS
	5.3 DISCUSSION

	REFERENCES
	APPENDIX A. Images Acquired by Corridor Recognizer
	APPENDIX B. Control Program Interface
	APPENDIX C. Documentation of Image Processing API
	ugaai.wheelchair.java�Class ImageProcessing
	G_SIGMA
	GRAY_WHITE
	GRAY_BLACK
	ImageProcessing
	ImageProcessing
	getImageBuffer
	getImagePixels
	setImagePixels
	getWidth
	getHeight
	setGaussianSigma
	load
	array2image
	array2image
	image2array
	rgb2gray
	save
	save
	histogram
	getLuminance
	threshold
	doubleThreshold
	doubleThresholdRGB
	smootingFilter
	meanFilter
	meanFilter
	medianFilter
	gaussianFilter
	gaussianFilter
	edgeDetector
	thinOperator

